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Lattice Gases with Static Disorder: 
Renormalization of Mean Field Theory 
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Lattice gas automata are used to model transport phenomena in random media 
with static disorder. If the interactions are repulsive, there is a large probability 
of backscattering or retracing collision sequences. In that case the Boltzmann 
equation or mean field theory breaks down, even in the limit of a low concen- 
tration of scatterers. Here sequences of uncorrelated and retracing collisions are 
of equal importance. The repeated ring approximation is used to resum the 
retracing trajectories, and the renormalized transport coefficients are calculated 
in the low-density limit, not only for hard core scatterers (diamonds, hexagons, 
triangles), but also for mixed point scatterers (mirrors, rotators, reflectors). The 
results are compared with extensive computer simulations. 
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1. INTRODUCTION 

Percolation and transport phenomena in random media with static disorder 
are frequently modeled on lattices. (1-3) In most cases of physical interest 
the scatterers exert some short-range repulsion on the moving particles 
(backscattering). Due to the discrete nature of phase space, backscattering 
in lattice gases of arbitrary dimensionality introduces one-dimensional 
pathologies. A dramatic consequence is that the Boltzmann or mean field 
theory does not give the correct low-density behavior of such lattice gases, 
as first observed in refs 2 and 4. The effect of backscattering is particularly 
strong in the low-density limit, where the phase space accounting for 
uncorrelated collision sequences is equally large as the phase space 
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accounting for all retracing trajectories with returns to the same scatterer. 
This effect may reduce the transport coefficient by a factor on the order of 
two. (2) 

In Lorentz models on square lattices with point scatterers the effective 
medium approximation gives predictions for the diffusion coefficient that 
agree well with the results of computer simulations at all densities. (2) 
Van Be~jeren and Ernst have extended these results to an arbitrary number 
of dimensions and to arbitrary lattices. (5) Using an exact enumeration 
method for retracing trajectories, they have derived exact expressions for 
transport coefficients in the limit as p ~ 0, and a simple approximate 
expression for all densities that agrees very well with the predictions of the 
more complex formulas of ref. 2. Unfortunately the theory of ref. 5 is only 
applicable to systems of identical point scatterers. The effective medium 
theory of ref. 2 does apply to mixtures of point scatterers, but can only be 
evaluated numerically. 

The goal of the present paper is an analytic calculation of correlation 
functions and transport properties not only for identical point scatterers, 
but also for finite-size scatterers and mixtures of scatterers. In particular we 
focus attention on low concentrations of scatterers, because in such systems 
the backscattering events to be analyzed in the present paper are the 
only corrections to mean field theory. Here we propose an approximate 
resummation technique for lattice Lorentz gases that only accounts for the 
so-called repeated ring collisions, which form a subset of all retracing 
trajectories, and we present applications to several types of models. As an 
analytical test on the quality of this approximation we apply the theory to 
Lorentz gases with identical point scatterers and show that the resulting 
diffusion coefficient coincides with that obtained from the exact enumera- 
tion method. For random mixtures of point scatterers (e.g., right and left 
mirrors (3)) and for extended scatterers (6' 7) the resulting low-density diffusion 
coefficient is only approximate. Our analytic results are compared with 
computer simulations. 

The plan of the paper is as follows: The necessary definitions and the 
microdynamic equations are introduced in Section 2. Section 3 describes 
the repeated ring approximation, which is solved analytically in Section 4 
in the low-density limit. Section 5 shows that the repeated ring approxima- 
tion is exact for identical point scatterers, and Section 6 compares the 
theoretical results for the diffusion coefficient with computer simulations. 
Some details on applications to random mixtures of point scatterers and to 
finite-size scatterers are given in appendices. The paper ends with a brief 
discussion. 
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2. LATTICE L O R E N T Z  G A S  

We consider a Lorentz gas on a regular d-dimensional space lattice 5 ~ 
with V= L d sites, a coordination number equal to b, unit lattice distance, 
arid periodic boundary conditions. A random fraction of the sites is 
occupied by a fixed scatterer. The configuration of scatterers is given by the 
set of occupation numbers s =  {sa(r); r~50},  where Sa( r )=l  if site r is 
occupied by a scatterer of type a and sa(r) = 0 otherwise. The expectation 
value ( s a ( r ) ) = p a  denotes the density of scatterers of type a, where the 
average is taken over a site-independent distribution of scatterers. The total 
density of scatterers is p = ~ a  Pa" 

A single particle is located at one of the lattice sites at integer times 
t = 0, 1, 2,... and moves with a constant velocity c,. (i = 0, 1 ..... b - 1 ) until it 
hits a scatterer. The set of allowed velocities {ci} consists of b nearest 
neighbor lattice vectors. The above types of models are generally referred 
to as Lorentz gases. If the moving particle hits a scatterer of type a with 
incoming velocity %, its outgoing velocity will be cg with probability 
Wai: = ~u + T,o, normalized as Z~ T~ij = 0. The moving particle is described 
by the occupation number n~(r, t), which equals 1 if velocity channel e~ at 
site r is occupied at (precollision) time t and vanishes otherwise. 

On long time scales the average motion of the moving particle is 
diffusive. The diffusion coefficient is in general a tensorial property D,a with 
a, fl = {x, y, z,..., d}, which may have nonvanishing off-diagonal elements. 
It is defined through the Green-Kubo relation, 

) >o+ 1 
1 

= ~ ( ( C a [  F ]c~) + (ca] F Ic~,) -~tf~,B) (2.1) 

Here v,(t)=~r~Ci, ni(r, t) is the velocity of the moving particle. On the 
second line of (2.1) the time correlation function has been expressed in 
terms of the kinetic propagator, which is the most fundamental quantity for 
describing nonequilibrium properties. The average ( - . . ) o  involves an 
average over the stationary distribution of the moving particle in a fixed 
configuration of scatterers and a subsequent average over all configurations 
s of scatterers. If the average only refers to the configurations s of the 
scatterers, we write ( . . .  ). The b x b matrix F is defined as 

F= f ~ G(r, t) (2.2) 
t = O  r 

822/71/5-6-12 
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where G0.(r, t) is the kinetic propagator 

Gu(r,t)=bV(n~(r,t)nj(O,O)Oj(O))/(O)~bV(ni(r,t)nj(O,O)) (2.3) 

The overlap function Oi(r ls)  equals 1 or 0 when the state {r, ei} is physi- 
cally accessible or inaccessible, respectively, so that ( 0 )  is the free volume 
fraction. In the case of point scatterers, q,;(r Is) = 1 for all the states {r, c~}. 
At t = 0 ,  G~j(r, 0 ) =  6o.6(r, 0), where 6(r, 0) is a d-dimensional Kronecker 
delta function. In the present paper we concentrate on the low-density 
limit and discard all terms that contribute only to higher-order density 
corrections. This implies, for instance, that the overlap function ~i is set 
equal to unity. 

It is convenient to consider G as a b x b matrix and the Cartesian 
component c~ with ~ = {x, y,..., d} itself as a b-vector in state space with 
components { Cja; j = 0, 1,..., b - 1 }. We further introduce a scalar product 
of b-vectors u(c) and v(c) as 

l b - 1  
( u l v > = ~  ~ u*(cj) v(cj) (2.4) 

j = o  

where the asterisk denotes complex conjugation. 
In order to develop the kinetic theory for Lorentz gases, the equation 

of motion for the microscopic variables must be constructed. The time 
evolution of the moving particle consists of two steps, a collision step, 
described by the collision operator I(rhs), and a propagation step, 
described by the streaming operator 5 e. The equation for the (backward) 
time evolution for the occupation numbers n~(r, t) has been derived in 
ref. 7. It has the standard form of the microdynamic equation in lattice gas 
automata (LGA), i.e., 

n~(r, - t - 1) = ~n~(r, - t) + ~ Iej(r I s) 5enj(r, - t) 
J 

where t is nonnegative (t/> 0). The streaming operator ~ ,  defined as 

5/ 'n / ( r ,  t) = n i ( r  -t- el ,  t)  

(2.5) 

(2.6) 

describes the propagation step. In the low-density limit relevant for this 
paper the collision operator  I ( r l s )  contains only binary collisions. In 
Lorentz models with-a mixture of different point scatterers the collision 
operator has the form 

I0.(r [ s) = ~ s~(r) Tai j (2.7) 
a 
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where a labels the different species. Two examples are given in Fig. 1, the 
details of which are described in Appendix A. In Lorentz models with 
extended scatterers the collision operator at low density of scatterers can be 
written as 

/0(r I s)  = ~ s(r + ei+ o) Tao (2.8) 
a 

where a labels the different impact parameters. Four  different models with 
extended scatterers are introduced in Fig. 2. The models with extended 
scatterers are variations on the hexagon models of ref. 6, and the explicit 
form of the T-matrices is given in Appendix B. In case of the triangle 
model, Eq. (2.8) is slightly modified [see (B.7)], because a scatterer is 
assigned to the center of a unit cell, and not to the lattice site. 

For  illustrational purposes we give the explicit form of the T-matrix 
for a square lattice model with identical point scatterers. If the moving 
particle hits a scatterer, it is transmitted with probability ~, reflected with 
probability /3, and deflected in either of the two perpendicular directions 
with probability ~, where c~ + ~ + 2~ = 1. In this case the collision operator 
T,~ is a 4 x 4 matrix of the form 

T= ( ~ -  1)1 .~_ fl~2 ~ ])(~ ..~_ ~3) (2.9) 

where the rotation matrix @ acts on a velocity label i as 

(~nu) ' =_ ~ (~n)~ Uj = U,+, (n = 1, 2,..) (2.10) 
J 

(a) 

6 

Cb) 

Fig. 1. Mixed point scatterer models: (a) rotators and (b) mirrors. 
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(~) (b) 

(r (a) 

Fig. 2. Extended scatterer models: (a) diamonds, (b) triangles, (c) hexagons A, and 
(d) hexagons B. 

In a more compact notation, the evolution equation (2.5) can be written in 
the equivalent form 

n ( -  t) = [(1 + J ( s ) ) S g ]  ' n(O) (2.11) 

where the occupation numbers {ni(r)} have been considered as a vector n 
with bV  components, (n)ri=ni(r),  and the operators 6e and J acting on n 
have been represented as b V• b V matrices with matrix elements 

~i,r'j = 6ijf(r', r + ei) 

~;,r7(S) = I,~(r I S) 6(r, r') 
(2.12) 

Similarly, the kinetic propagator (2.3) can be written in the compact 
notation 

Go(r, t ) =  ( ( [ ( 1  + J ( s ) )5~] ' )o j . , , )  (2.13) 

3. REPEATED RING A P P R O X I M A T I O N  

Before developing the repeated ring approximation, it is instructive to 
consider the mean field or Boltzmann approximation in the low-density 
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limit, where possible excluded volume effects and multiple collisions can be 
neglected. The Boltzmann approximation only accounts for uncorrelated 
collision sequences in which the moving particle never returns to a scatterer 
viSited before. Therefore each collision operator J ( s )  in (2.13) can be 
replaced by its average, 

0 t 
( J ( S ) ) r i ,  r, j -~- ( Iu(r  [ s ) )  6(r, r') = - A•6(r,  r ) (3.1) 

which is translationally invariant and A ~ is a b x b matrix given by 

A ~  = --  2 Pa Taij ( p o i n t )  

a 

= - ~ PTa~s (extended) (3.2) 
a 

In the Boltzmann approximation the propagator F in (2.2) is F ~  1/A ~ 

and the diffusion coefficient (2.1) becomes 

D~,p=~ (c~l-~lc~)+(c~l~lc~)-- 6~ (3.3) 

Next we turn to the repeated ring approximation. Based on the motivation 
given in the introduction, we restrict ourselves to low densities of scatterers 
(p ~ 0) and we only account for the simplest correlated collision sequences, 
the so-called ring collisions, in which the moving particle returns repeatedly 
to the same scatterer. This can be done using standard resummation 
methods of kinetic theory. (8/We start with a mixture of point scatterers, as 
occurring in the models of Appendix A. In the repeated ring summation 
the fluctuating operator J ( s )  in (2.13) is replaced by a nonfluctuating or 
effective one, similar to (3.1) with A ~ replaced by A. The Fourier transform 
of the kinetic propagator (2.13) takes the form 

/~(q) = ~ Z [ e x p ( - f q  . r)]  G(r, t) 
t ~ O  r 

= [ e x p ( -  fq.  e)] [ e x p ( -  fq. e) - 1 + A] -1 (3.4) 

where f = ( - 1)1/2 and [exp(fq �9 e)] 0 = 6 o. exp(fq �9 ci). The collision operator 
A sums the repeated ring collisions, i.e., 

A =  - Z  po{r + roRro+ r o R L R r o +  ... } 
a 

_ por  

- R T ~  
(3.5) 
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where the ring operator is defined with the help of (3.4) as 

1 ~ [exp(fq .c) ] /~(q)=fq  [ e x p ( - f q . e ) - I  + A ]  ~ (3.6) R=Pq IB z 
The element Ro represents the total return probability with arrival velocity 
ei to a site visited before, when its departure velocity was e i. The q-sum 
extends over the first Brillouin zone of the reciprocal d-dimensional lattice 
s corresponding to the direct lattice s under consideration. The wave 
vector q = Z s q ~ e *  ( s=  1, 2,..., d) is a reciprocal lattice vector and {e*} is 
the set of independent reciprocal basis vectors. As we have imposed periodic 
boundary conditions on the macroscopic system with V = L d sites, the com- 
ponents qs are given by q, = 2~v~/L with v, = - �89 + 1,..., - 1, 0, 1, 2,..., �89 
The integration symbol in (3.6) is defined as 

. . . .  V • "'" ' 2 n ]  q ~ I B Z  s = l  - - n  

In the thermodynamic limit (V ~ ~ ) the summation over the first Brillouin 
zone can be replaced by an integration. For general lattices (ql, q2,...) are 
non-Cartesian components of q. For instance, for the infinitesimal volume 
element on the triangular lattice, dql dq2 = �89 x//3 dq~ dqy, where q~ (~ = x, y) 
are Cartesian components. The first term in the collision operator (3.5) is 
the Boltzmann collision operator; the next term, TaRTa, accounts for the 
first return to the same scatterer, labeled a; etc. 

The combined equations (3.5) and (3.6), containing the unknown 
matrices A and R, constitute a self-consistent set of equations, from which 
A and R can be determined for mixtures of point scatterers. Once A is 
determined, the transport coefficients can be calculated for any density 
using (2.1) and (3.4) with F=/~(q  = 0). In general, such calculations have 
to be performed numerically. However, in the limit of a low concentration 
of scatterers the system of equations (3.5) and (3.6) simplifies sufficiently to 
allow an analytic solution, as will be shown below. 

Consider next the repeated ring approximation for models with finite- 
size scatterers. The collision operator is given by (2.8). The label a runs 
over all possible impact parameters of the moving particle in a (binary) 
collision with a single scatterer. Therefore the repeated ring approximation 
for extended scatterers reduces for p---, 0 to a simple matrix relation, 

pT, (3.8) A= - E l  -Rr  
a 

where the sum is restricted to binary collisions, a denotes the different 
impact parameters, and p is the density of scatterers. The diffusion coef- 
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ficient D=B (~, fl = x, y) in the repeated ring approximation is given by (3.3) 
with A ~ replaced by A. 

The most convenient way to evaluate D is to study the matrix A in 
(3.5) or (3.8) and to determine its eigenvectors and eigenvalues. Not  only 
the symmetry properties of A, but also those of the matrices R and To are 
determined by the symmetries of the scatterers and of the underlying 
lattice, as explained in Appendix C. Symmetry considerations immediately 
yield the complete set of common eigenvectors Ot (l = 0, 1,..., b -  1) of the 
set of commuting matrices with the appropriate lattice symmetries. 

By convention, we denote the eigenvalues and eigenvectors as 

MIot )=mzlo t )  ( l : 0 ,  1 ..... b - i )  (3.9) 

where (OtlOt,)=6u,. The b-vectors lot)  for different symmetries and 
corresponding eigenvalues are explicitly given in Appendix C. For the 
eigenvalues we use the notation 

M={R,A ,  Wa, Ta,...) 

mt= {rt, 2t, war, -za,,...} 
(3.10) 

In case the scatterers have only rotation symmetry, but not reflection 
symmetry (see Appendix A; rotator model), the relevant eigenfunctions 
are I O 1 ) = [cx + fey ) and I Ob- 1 ) = J O ~' ) = l e~ -- fCy) with corresponding 
eigenvalues 21 and 2 6 1=2  *. The diffusion tensor for the square and 
triangular lattices is diagonal, i.e., 

D ~  = 6~/~ Re(221) - 1 (3.11) 

where Re denotes the real part. In case the scatterers have only reflection 
symmetry (see Appendix A; mirror model), the relevant eigenfunctions for 
the square lattice are IO1 ) = lex + Cy ) and 103 ) = lex - ey ) with eigenvalues 
21 and 23, respectively. The diffusion tensor is 

1(1+ 
Dx"=Dyy-~4\-s ~ )  

1C Dxy= Dyx=-~ 
(3.12) 

In case the system has on average both rotation and reflection symmetries, 
21 = A3 and the diffusion tensor is again diagonal. The above expressions 
hold also for the Boltzmann approximation with 2t replaced by 2 ~ 
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4. RING INTEGRAL AT LOW DENSITY 

In this section the eigenvalues r t of the ring integral R, defined in (3.6), 
are evaluated for small concentration of scatterers (p--, 0), starting from 
the expression 

fq 1 rt = (q~l[ e x p ( - f q . c ) - I  + A  [q~t) (4.1) 

Analytic evaluation of this d-dimensional q-integration over elements of 
an inverse b x b matrix is not possible in general, although in two very 
special cases of a square lattice model (2' 9) the integral has been evaluated 
analytically for general density. 

In the low-density limit (p ~ 0), however, the integration in (4.1) can 
be carried out analytically and yields a nontrivial result. First, suppose 
that one takes the limit p--* 0 of (4.1) by interchanging q-integration and 
p-limit. As all matrix elements of A are of (9(p) on account of (3.6) and 
(3.8), one finds the simple result 

fq [exp( - fq- e) - 1 ] - 1 = _ �89 (4.2) 

However, the limits p--* 0 and q--* 0 cannot be interchanged, and the 
integration region at small q has to be investigated separately. Therefore we 
consider the difference between R in (3.6) and the naive limit (4.2), i.e., 

fq3(q)= fq { [exp(-fq.c)-  l + A3 l _ [ e x p ( _ f q . c ) _ l ] - l }  

=- fq[eXp( - f q . c ) - l+A]  1 A [ e x p ( - f q . c ) - l ] - I  (4.3) 

and we consider a small sphere around the origin with a radius Iql 
proportional to p. As A ~ (9(p), simple scaling arguments show that the 
contribution of this region to the integral (4.3) is of (9(p a- 1). In all dimen- 
sions except d =  1 this contribution can be neglected with respect to (4.2). 

Next, we consider a one-dimensional strip dk on a 2D lattice (and, 
more generally, a (d-1)-dimensional  slab in a d-dimensional lattice), 
perpendicular to ek and ek+b/2, where q k = q - e  k ( k = 0 ,  1 ..... b/2-1) is 
small of (9(p) and where the remaining q-components extend over the total 
interval (-re,  ~). The contribution of strip dk to the integral (4.3) can be 
estimated by rescaling only the component qk = Pgtk. It gives a singular 
contribution of (_9(p~ which is of the same order of magnitude as (4.2). 

Therefore, we need the dominant behavior of A(q) in strips SCk, 
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obtained by letting qk = q ' ck  approach to zero. For that purpose, we write 
the matrix 3(q) in (4.3) as 

A(q)= ~ (-GA)" G 
n = l  

G =  [ e x p ( - f q - e ) - - I  ] -1  
b / 2  - -  1 

2 
k = 0  

[sin qk/(1 - cos qk)] fVk 

(4.4) 

Here the diagonal matrix G u = 6 o . ( e x p ( - f q j - 1 )  1 has been expressed in 
terms of the b-dimensional diagonal matrices 

( Vk  ) o = 6 ij( 6jk - '~ j ,k + b/2) (4.5) 

They have the property 

n m n+m {V k if n + m = o d d  
VkVt =6ktVk =6kl V~ if n + m = e v e n  (4.6) 

To summarize the results of this section so far, we have for the eigenvalues 
of the ring operator, 

r /=  - � 8 9  (~Ptl A I~o,) (4.7) 
k = 0  

with A given by (4.3) and (4.4). The integration in the kth term extends 
over the strip dk with qk "~ O(p), where G in (4.4) is given by 

G -~ (f/qk) Vk + (9(q ~ (4.8) 

The most important property for our analysis, which applies to strip dk 
only, is 

(GA) 2 [ V ~ ) = ( - # + / ~  /q~) [Vk) 

(GA) 2 ] V2 ) = (--/~+ #-/qk)2 i V 2 )  
(4.9) 

Here the b-vectors are I V~ ) = a V~ I 1 ) with I 1 ) = (1, 1 ..... 1), and # + and 
#_  represent the average of the even ( + )  or odd ( - )  eigenvalues of A, 
with 

2r 

2 I- ) ~-=~ ;~ 
(4.10) 
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where the superscripts denote a summation over even ( + )  or odd ( - )  l 
values only. To prove (4.9), we decompose the b-vectors I Vk) or I Vk z) into 
eigenvect0rs Iqb) of A (see Appendix C). Subsequent application of GA 
yields respectively IV 2) or [Irk) on account of (4.6). Consequently, the 
matrix (GA) 2 in strip ~r has I Vk) and IV 2) as eigenvectors. 

We illustrate this result for a square lattice model (b=4)  with 
rotationally symmetric scatterers and eigenfunctions [q~) given by (C.4). 
Consider strip ~o, where 

f 
GA IV0)> = G(~ 1 kO1)> "[-.,~3 Iq~3)): qop_ IVy) 

f 
GA IVo2)= G(201~oo)+22[~02))=qo u+ IV o) 

(4.11) 

In the left equalities, (C.4) has been used together with (3.9) and (3.10); in 
the right equalities, (C.3) was used together with (4.6). If one deletes in 
(4.11) the intermediate equality, referring to the square lattice, one obtains 
the basic relations, which hold for all lattices, all types of scatterers, and all 
allowed orientations of the strip dk (k = 0, 1 ..... b/2 - 1 ). Application of GA 
to both equations in (4.11) finally yields (4.9). 

The derivation of this result for other strips dk, for scatterers with 
different symmetries (e.g., reflection), and for different lattices and dimen- 
sionalities is completely analogous and can be carried out straightforwardly 
using the relations of Appendix C. Repeated application of (4.9) yields A(q) 
in the strip ~k for all lattices and all symmetries of scatterers. The contri- 
bution of this strip to the integral in (4.3) becomes then 

fOffk (Vk[A [Vk)~fzff k -~-+-- 1 ( ~ + )  1/2 
q2+#+#_ b 

( V k l A l V ~ ) = ~  q2+#+#_ b\l~+/ 

(4.12) 

where the relation (VklVk) = 2/b has been used [see (2.4) and (C.3)]. The 
contribution of every strip dk (k = 0, i,..., b /2 -  1) is identical. A direct 
application of (4.12) to the ring eigenvalue (4.7) yields in the low-density 
limit 

1 1/2 
ro=r  . . . . .  

r , =  1 
r, r3 2 + 1 - -  

(l = 0, 2, 4,...) 

(l= 1, 3, 5,...) 
(4.13) 
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where the formulas (C.4), (C.6), and (C.8), which express I~0t) in terms of 
I Vk) or IVy), have been used. These results agree with the only available 
result for rt, which has been obtained for a square lattice model with 
scatterers having rotational symmetry. (2' 9) 

As a result of (4.13), the self-consistent set of transcendental equations 
(3.5), or (3.8), and (3.6) for the unknown matrices A and R has been 
reduced in the low-density limit to a set of algebraic equations for the 
unknown eigenvalues 2t and rt, which will be cast into an equation for a 
single variable. We start with point scatterers of different types, where the 
eigenvalues 2 /of  the ring collision operator (3.5) are 

P a "f al (4.14) 
2l = Z 1 + rt'~at 

a 

where rat are the known eigenvalues of - To and where rt is given in terms 
of 2k through (4.13). A convenient change of variables in (4.13) is 
y =  (t~_//~+) m. Substitution of (4.13) into (4.14) then gives 

I~a 2pO (/=even) 
Y + r/at (4.15) 

2t = }3-" -2pa y ( l= odd) 
(a'7 1 + rtoty 

and we have introduced 
2 

r / a t = - - -  1 (4.16) 
"C al 

Combination of (4.15) with y2Z~+))~t=~2~-);~ t yields, after some 
rearrangements, an algebraic equation for y, i.e., 

c(+) y (-) 1 0 
~ p, tz~oy_~ q, ' ~ l + ~ - f - f } =  (4.17, 

Comparison of (3.8) and (3.5) shows that the only modification for a 
set of identical scatterers of finite size is that Pa in (4.15) and (4.17) is 
replaced by p. The summation over a refers here to different values of the 
impact parameter, where the corresponding scattering operator is described 
by Ta (see Appendix B). 

Equations (4.15) and (4.17) are the most important results of this 
paper. From their solution one can calculate the approximate eigenvalues 
2t of the repeated ring collision operator A, which determine directly the 
diffusion coefficient at a low concentration of scatterers through (3.3) with 
A ~ replaced by A. 
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5. IDENT ICAL  POINT  SCATTERERS 

The solution of the self-consistent repeated ring approximation 
(4.15)-(4.17) can also be applied to a Lorentz gas with identical point 
scatterers that backscatter. For such models the diffusion coefficient for a 
small concentration of scatterers (p ~ 0) was recently calculated in ref. 5 by 
an exact enumeration of all possible trajectories on a Cayley tree. Here we 
will show that the repeated ring approximation--which only sums a small 
subset of all contributing trajectories--<loes give the exact result for p --* 0 
if all scatterers are identical and point like. 

To begin, we quote the result of ref. 5 for the kinetic propagator (2.2) 
as p --~ 0, 

1 X 
F =  1- ( -  ~ +  ~-2---X) P (5.1) 

where W,j= 6 o + T,~ is the matrix of transition probabilities and X U the 
matrix of first return probabilities to the initial interval. On a Cayley tree 
X,~ is only nonvanishing for e j=  - e  i or i=j+ b/2. The eigenvectors lot)  
(l = 0, 1,..., b - 1) of W and X are determined by the lattice symmetries and 
are given in Appendix C. The corresponding eigenvalues are wl = 1 - vl and 
x t=  ( -  1) t x, where the first return probability x satisfies the polynomial 
equation 

b 1 (+) 1 (-)  1 
- - -  + l~o  1 - x w ,  + ~ 1 +xw~ (5.2) 1 - - X  2 ] - - X  

On the other hand, for a regular lattice of point scatterers of the same type 
and for low concentration of scatterers, the repeated ring propagator (3.4) 
combined with (3.5) can be cast into the form 

1 1 1 

The eigenvalues rt of R are given by (4.13) with y -  (/t_/# + )1/2 satisfying 
(4.17). That equation becomes now 

~ y/[y l+w, - I  ~ ' 1 / I 1  + l ~ y ] =  0 (5.4) 
+ , 

where (4.16) and wt= 1 - T  t have been used. Comparison of the right-hand 
sides of (5.1) and (5.3) suggests the identification R ~ X/(1- X). This 
implies that the eigenvalue rl = - � 8 9  �89 in (4.13) equals -x/(1 +x), or 

l + x  
(5.5) Y=I--x 
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Indeed, substitution of (5.5) into (5.4) yields, after some rearrangements, 
an equation for x that is identical to the exact equation (5.2) obtained in 
ref. 5 from the exact enumeration method. Therefore, the results obtained 
in Section 4 turn out to be exact in the limit of vanishing concentration of 
point scatterers of the same type. 

6. C O M P A R I S O N  W I T H  S I M U L A T I O N S  

6.1. Ident ical  Point  S c a t t e r e r  

In this section exact and approximate results obtained from kinetic 
theory will be compared with computer simulations for various models of 
point and extended scatterers. However, there is a complication because 
the analytic results from ring kinetic theory only apply to the limiting case 
of low density (p--* 0), whereas simulations need to be performed at finite 
densities. 

We consider first a lattice gas with identical stochastic point scatterers, 
as defined in (2.9). At low densities (p--*0) the kinetic propagator F is 
given by the exact expression (5.1). For a completely filled lattice (p=  1) 
the lattice gas reduces to a random walk, where the exact propagator is 
given by F =  - ( p T ) - ' - � 8 9  In ref. 5 a probabilistic argument was given to 
include a density-dependent correction in (5.1), reading 

[ ( / -  1)X 
r = - ~ +  1 - x  (6.1) 

where [=  lip is the mean flee path. The formula linearly interpolates 
between two exact limiting cases for p ~ 0 and p ~ 1. It predicts for the 
diffusion coefficient 

D= Dxx =2 1 + x 

where we have used (2.1) and eigenvalues (vl, x), defined through Tcx= 
- V l  cx and Xex = - x e x  with ~1 = 1 -  a + fl, as can be obtained from (2.9), 
(C.1), and  (C.3). To compare theory and simulations, we can use the result 
(6.2) for the diffusion coefficient at finite densities, which extrapolates to 
the p--, 0 result, as predicted by the present theory. This is illustrated in 
Fig. 3 by the solid curve and simulation data (squares) with parameters in 
(6.2) set at a = fl = 1/3 and 7 = 1/6. 

The plot also illustrates that the Boltzmann approximation (dashed 
line) gives a very poor prediction of the diffusion coefficient at low densities. 
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In  ref. 2 simulation results for the same model  have been compared  with the 
effective medium approximation.  This approximat ion  has a very complex 
structure, which, for finite densities, can only be analyzed numerically. 

612. M ixed  Point Scatterers 

For  models with mixed scatterers, as int roduced in Fig. 1 of Section 2, 
no analytic results for the diffusion coefficient are available for finite den- 
sities. Simulation results (triangles) for the two-componen t  mirror  model,  
as defined in Fig. lb, are also shown in Fig. 3. The parameters  for this 
model,  as defined in (A.2) of Appendix A, are �9 = fl = 7 = 1/3 with nor-  
malization ~ + fl + 7 = 1. There are equal concentrat ions of R-mirrors and 
L-mirrors  (PR = PL = l p )  and no B-scatterers (PB = 0). Note  the difference 
in normal izat ion of  the rates ~, fl, and 7 from those described in (2.9). 
The diffusion coefficients at densities above p =0 .01  were obtained by 
measuring the mean  square displacement of a particle tha t  moves on a 
lattice within a fixed array of scatterers. The result at the extremely low 
density p = 0.01 was obtained on a Cayley tree that  corresponds to this 
part icular  model. 

According to the repeated ring approximat ion,  the diffusion coefficient 
as p--* 0 for the mirror  model  is given by (3.12) with 2t in (4.15). I f  we 
restrict ourselves to equal concentrat ions of right and left mirrors, i.e., 

pD 
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Fig. 3. Comparison of simulations and theory for the diffusion coefficient D(p). 
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PR = PL = Cp and Pa = Cap, the eigenvalues in (3.12) are equal and given 
by 

{ c c } 
= + + Ca (6.3) 21 23=2py l + r / R l y  l + q R 3 y  

The quantity y is the positive root of (4.17), which reads for the present 
c a s e  

y 1 1 Ca 

Y + qR2 1 -J-/~R1 Y 1 + qn3 Y C 
(6.4) 

where r/a1 follows from (4.16) and (A.5) as 

t lR ,=(1- - f l ) / f l ,  qR2=( 1 --7)/7, t/R3 = a/(1 --a) (6.5) 

For the parameter values used in the simulations, the solution of (6.4) is 
y = l + x ~  and the diffusion coefficient D=(221)  - I  for p--*0 becomes 
pD = �88 x/~)-~ 0.317. Figure 3 and Table I show that this limiting value 
is in very good agreement with the simulation results (triangles). 

The Boltzmann approximation D o = (22 ~ -1 for p ~ 0 can be obtained 
from (6.3) by setting y =  1 and using (4.16) and (A,5) with the formula 
2 o = 2p{C(1 - a + fl) + Ca}. For the parameters used in the simulations 
(c~ = fl = 1/3, C = i/2, Ca = 0) this gives in the low-density limit pD ~ = 1/2 
(see Fig. 3 and Table I), which is a very poor estimate of the diffusion 
coefficient. 

A crude estimate of the diffusion coefficient for a// densities may be 
obtained from the average scatterer approximation. In this approximation 
the different types of scatterers in the mixture are replaced by a single 

Table I. Values for pD(p) as p - *0 ,  Obtained from the 
Scatterer, and Repeated Ring Approximations, and 

Boltzmann, Average 
from Simulations 

Model Boltzmann Average scatterer Ring Simulation 

Rotator 0.417 0.299 0.361 0.38(2) 

(~ = 1, PR = PL = 2pB) 
Mirror 0.5 0.348 0.317 0.3 ! 8 
(~=/~=~=~, pB=0) 
Diamond  0.15 0.10 0.102 0.084 
Hexagon A 0.096 0.077 0,077 0.083 
Hexagon B 0.115 0,068 0.076 0.049 
Triangle 0.105 0.077 0.079 0.068 
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average scatterer to which the result (6.2) is applied. Let Ca = Pa/P with 
~a  Ca = 1 be the fraction of scatterers of type a. Then the collision matrix 
T of the average scatterer is defined as 

T =  ~ C a T~ (6.6) 
a 

If we restrict ourselves to models with equal concentrations ( C  R = C L .~- C)  

of right and left scatterers (rotators in Fig. la; mirrors in Fig. lb), then 
the average scatterer is described by T of (2.9) with average transition 
probabilities, 

~ = 2c~C; /~= 2/~C + CB; ~ = ( 6 + 7 ) C  (6.7) 

where 6 = 0 for the mirror model. For the simulation of Fig. 3 this yields 
~ = f i =  1/3 and 9 =  1/6. This average scatterer is identical to the point 
scatterer of Section 2, and the prediction of the average scatterer approx- 
imation coincides with the solid line in Fig. 3. Although this approximation 
gives only a rough estimate of the actual density dependence, it is still 
both qualitatively and quantitatively much better than the Boltzmann 
approximation. The resulting diffusion coefficient for p --, 0 is also listed in 
Table I. 

For the rotator model, defined in Fig. la, simulations of the diffusion 
coefficient were done in ref. 9 for a random mixture of deterministic 
rotators (7 = 1) and reflectors with composition Pn = PL = 2pB = 2p. The 
simulated diffusion coefficient pD = 0.38 + 0.02 is listed in Table I. With the 
restriction to equal concentrations CR = CL = C the diffusion coefficient in 
the repeated ring approximation is given by D = (221) -1 with 

C + CB) (6.8) 2 1 = 2 y  p 2 R e l + ~ / R l y  

The quantity y is the positive solution of (4.17), i.e., 

Y 2 Re - - 1  CB (6.9) 
y+rIR 2 1 +rlRly  C 

where ~/R1 and ?JR2 can be obtained from (4.16) and (A.2). For the model 
parameter of the simulations ( C = 2 C B = 2 / 5  and 7 =  1) the solution of 
(6.9) is y = x / ~ .  The resulting diffusion coefficient in the repeated ring 
approximation, pD = (5/24) x/~ --- 0.361, is also listed in Table I. It 
agrees well with the simulation result 0.38 + 0.02 within error bars. The 
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corresponding Boltzmann approximation, pD ~ and the average 
scatterer approximation, pD ~-0.30, which follows from (6.7) with ~=0,  
fl = C~ = 1/5, and ~ = C = 2/5, give very poor theoretical predictions. 

6.3.  E x t e n d e d  S c a t t e r e r s  

In Fig. 2 of Section 2 we introduced Lorentz lattice gases with finite-size 
scatterers on square or triangular lattices, and we measured the mean square 
displacements on these lattices with the help of computer simulations. For 
the diamond model additional low-density simulations were carried out on 
the corresponding Cayley tree. The results are listed in Table I and com- 
pared with various theoretical results, to be discussed below. The diffusion 
coefficient is always given by D = Re(221) -1. 

In the repeated ring approximation the eigenvalues can be obtained 
from (4.15) with Pa replaced by p [see below (4.17)]. This expression 
contains the quantity y, which is the positive root of (4.17). For the 
diamond model the y equation reduces to a quartic equation, 

4 2y y 2 
R e l + q l l y  y + 2  -~y+�89 l + � 8 9  (6.10) 

with r/H = ( 4 -  3f)/5 from (4.16) and (B.2). Its solution is y -~ 2.5141. The 
diffusion coefficient for p ~ 0 follows from (4.14) as 

1 (l+1�89 1 ) -1  (6.11) pD=~y + 2 R e  1 +~hlY 

Its numerical value is listed in Table I, together with the Boltzmann 
approximation, obtained from (6.11) by setting y =  1. It accounts for 
about 70 % of the difference between the simulations and the Boltzmann 
approximation. 

In the hexagon model A of Fig. 2c one obtains the y equation in the 
form 

y 8y 4 4 ) 5 2 2y (6.12) 
Re +~h2 l+r / l lY l + r / * 2 Y - l + ~ y + l + 3 ~  Y+~ 

with r/1 ~ = l/r/* 2 = ( 2 4 -  f5 x/3)/31 and solution y - 1.6246. The diffusion 
coefficient becomes 

1 
§ +~112Y)] (6.13) PD=~Y [-I+Re//'IL1--~3z-y ~ +~/HY2 1 2 -1 

822/71/5-6-13 
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The Boltzmann value pD ~ [obtained from (6.13) with y = 1] is about 16% 
higher than the simulation value, while the repeated ring approximation 
gives a value about 7 % lower. The deviations in model A do not follow the 
general trends of all other models discussed in the paper. This is caused by 
the large probability (2/5 in a binary collision) that the particle will 
recollide with the same scatterer in the subsequent time step, whereas this 
probability is zero in all other models, as discussed in ref. 7. 

For the hexagon model B of Fig. 2d the y equation is 

4 6y 2 2 1 
(6.14) R e l + r h l y  y + l  l + ~ y  l + � 8 9  l + 2 y  

with ~]11 ~ -  ( 5  - -  f6 w/3)/19 and solution y ~- 2.2024. The diffusion coefficient 
becomes 

1 + thl y )  (6.15) 

This diffusion coefficient is about 55% larger than the simulations and 
accounts for only 60 % of the deviation from the Boltzmann value. 

For the triangle model of Fig. 2b the y equation is 

+ - -  = y + ~  l + y  y l + q l l y  Y+r/o 

with r/~l = (13 - f8 V/3)/19, r/o x = (13 - f4 ,v/3)/31, r/o2 = (15 - f4 ,~/3)/21, 
and solution y ~- 1.8125, and diffusion coefficient 

% )  -1 
- -  + Re (6.17) pD=-ff-f Re 1 +t/11y 1 + r/ol 

This value accounts for about 70 % of the difference between Boltzmann 
and simulation values. 

In summary, the repeated ring approximation gives a very good 
prediction for the diffusion coefficient in the models with mixed point 
scatterers, and poor predictions for models with excluded volume effects. 

Finally we apply the average scatterer approximation to the extended 
scatterers. In the low-density limit or on a Cayley tree the M different 
impact parameters, labeled a in (3.8), can be considered as different point 
scatterers, so that the mean free path is [=  (pM)-1, which is to be used in 
(6.1). In the diamond model of Fig. 2a the labels for the impact parameters 
are a = 0, 1, 3 and M = 3; in model A of Fig. 2c the labels are a = 0, 1, 2, 
4, 5 and M = 5; in model B of Fig. 2d the labels are a = 0, 1, 5 and M = 3; 
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in the triangle model of Fig. 2b the labels are a = 0, t, 4, 5 and M =  4. 
The collision matrix T in (6.6) for the average scatterer is given by 
T= (~a Ta)/M with Ta given in (B.1), (B.3), (B.5), and (B.8). 

The average transition probabilities [compare (6.7)] are, for the 
diamond model, 

= ~ = 2/9; f l=  1/3 

The analog of the square lattice point scatterer (2.9) on a triangular lattice 
has transmission probability c~, a reflection probability 7 for 60 ~ angles 
and 6 for 120 ~ angles, with e +/~ + 27 + 26 = 1. With these definitions the 
parameters for the average scatterer approximation are, for the hexagon 
model A, 

= ~ = 6 = 4/25; fl = 1/5 

for the hexagon model B, 

~ = 0 ;  

and for the triangle model, 

f l= l / 3 ;  ~=1/9;  6 = 2 / 9  

= ~ = 1/8; /~ = 1/4; 6 = 3/16 

Applying the linear interpolation formula (6.2) to the average extended 
scatterers and solving x from (5.2) or y from (5.4) yields the results of 
Table I for the average scatterer approximation. We conclude that the 
repeated ring and the average scatterer approximation give equally poor 
predictions for the diffusion coefficient if excluded volume effects are 
present. 

7. D I S C U S S I O N  

The main results of this paper are: 

1. The analytic solution (4.15)-(4.17) of the repeated ring approxi- 
mation for small densities on general lattices (square, triangular) and for 
general types of scatterers (mixed point scatterers, extended scatterers). 

2. The demonstration in Section 5 that in the special case of identical 
point scatterers the approximate repeated ring approximation gives the 
exact, non-mean-field result that was obtained recently by van Beijeren and 
Ernst (5) by an exact enumeration method of trajectories on Cayley trees. 

3. The computer simulations of the diffusion coefficients in Section 6, 
which demonstrate the total failure of the Boltzmann equation in predict- 
ing the low-density diffusion coefficient. For identical point scatterers, the 
simulations compare very well (see Fig. 3) for all densities with the linear 
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interpolation formula of ref. 5. For mixed point scatterers the predictions 
of the repeated ring theory agree well with the computer simulations, both 
for mirror and for chiral models in the low-density limit. 

4. In models with hard-core scatterers the repeated ring approxima- 
tion gives a reasonable estimate of the computer-simulated values. The 
prediction accounts for about 60-70 % of the observed difference between 
simulations and mean field theory. 

5. To account for the observed difference between simulations and 
repeated ring kinetic theory in hard-core systems it seems necessary to 
evaluate, even in the low-density limit, non-ring-type collision sequences, 
such as repeated crossings ( a b a b . . . )  of the moving particle between two 
scatterers a and b. 

6. An alternative method for obtaining the low-density diffusion coef- 
ficient in Lorentz gases with extended scatterers would be to do the exact 
enumeration of all possible trajectories on the corresponding Cayley tree 
by computer. The exact enumeration of trajectories containing up to 8 
scatterers on a triangular lattice and up to 11 scatterers on a square lattice 
can be done. The extrapolated results for the diffusion coefficient agree well 
with the present simulationsJ 1~ 

APPENDIX  A. MODELS WITH POINT SCATTERERS 

In this appendix two Lorentz gas models with a mixture of different 
types of point scatterers are described and the corresponding collision 
operators are given explicitly. 

A1. Rotator  Mode l  

In this model the particle moves on a square lattice with three 
types of point scatterers with concentration PR, PL, and PB, with 
PR + PL + PB = P. The collision rules are illustrated in Fig. la. If the particle 
hits a scatterer of type R (L), it has probabilities 0~, 8, 7, and 6 =  
1 -  (~ + fl + 7) of being transmitted, reflected, deflected to the right (left), 
and deflected to the left (right), respectively. Scatterers of type B are 
pure reflectors. In the deterministic case (~ = fl = 6 = 0), this model reduces 
to the one introduced by Gunn and Ortufio. ~1) The model has rotation 
symmetry. The binary collision matrix Ta in (2.7) takes the form 

TL-~(O~-- 1)1 _]_ y~  _[_/~2..~_ ~ 3  (A.1) 

TB= ~2 _ 1 
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The rotation matrix @ is defined in (2.10). The common set of eigenvectors 
of the matrices T~ is given in (C.3) of Appendix C. The corresponding 
eigenvalues - "Cal defined in (3.10) are 

�9 Rt = ~ * t  = 1 - c~ - 6 ~  t - / ~ (  - 1 ) t _  ~,( _ ~)t  

rBt= 1 -- ( -  1) 1 (A.2) 

where f =  ( - 1 )  ~/2. The label 1 is introduced in (3.9). 

A2.  M i r r o r  M o d e l  

In the rotator model the action of a scatterer is defined with respect 
to the direction of the moving particle. In the mirror model the action is 
defined with respect to the orientation of mirrors in the lattice. In this 
model three types of scatterers can occupy the sites of a square lattice: right 
mirrors (R), left mirrors (L), and reflectors (B). The stochastic collision 
rules for the mirrors, shown in Fig. lb, are normalized as ~ +/~ + 7 = 1. 
Again the model can be specialized to a deterministic model by setting 
e = / ~ = 0 .  If in addition pB=0,  it reduces to the deterministic model 
introduced by Ruijgrok and Cohen. ~ 

This model possesses reflection symmetry. The collision matrix is given 
by (2.7) with 

TR= (~-- 1)1 +flUB+TU R 

Tz.= (r t)1 +flUB+~UL (a.3) 

TB=UB--1 

The matrices U. are defined as 

UR = ~01 ~23, UL = ~ 0 3 ~ 1 2 ,  U~ = No2~3 (A.4) 

where the permutation operator ~ t  interchanges the labels k and ! and 
leaves the other labels invariant. Its eigenvectors are given in (C.8). Here 
we list the eigenvalues ( -  rat) of the collision operators in (A.3): 

Ta0 = 0 ,  ~R1 = ZL3 = 2fl, rR2 = Vm = 2~ 

VR3 = rL1 = 2(fl + 7), VB1 = TB3 = 2, Z~2 = 0 (A.5) 

Here we have constructed the 
of Lorentz models containing 
be easily extended to different 

collision operators for two typical examples 
several types of scatterers. The method can 
types of scatterers and to different lattices. 
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APPENDIX B. MODELS WITH EXTENDED SCATTERERS 

B1. Diamond Model 

Diamond-shaped hard scatterers are put randomly on a square lattice 
(see Fig. 2a). The three possible incoming states of the moving particle 
(a = 0, 1, 3) are indicated with an open arrow; the three possible outgoing 
states (solid arrows) are equally probable and are independent of the 
incoming velocity. The collision operator is given by (2.8) with T-matrices 

3 

Ta= - 1  +�89 ~ ~k  (B.1) 
k=O, k e a  

with a = 0, l, 3. The eigenvectors and eigenvalues of the rotation matrices 
are given in (C.l) of Appendix C. From there one obtains the eigenvalues 
-za t  of the collision matrix Ta (a = 0, l, 3) as 

za0 = 0, zat = 1 + lfal (B.2) 

with l = 1, 2, 3, which are needed in the body of the paper. 

B2. Hexagon Model A 

It is the direct analog of the diamond model on the triangular lattice, 
as illustrated in Fig. 2c. Here hard hexagons are put on a triangular lattice. 
There are five possible outgoing directions. The only excluded bond is 
the one connecting the point of impact with the center of the hexagon. 
The collision operator is again given by (2.8) with the binary collision 
T-matrices given by 

5 

To=-I+  (a.3) 
k ~ O , k ~ a  

with a = 0, 1, 2, 4, 5. The eigenvectors and eigenvalues of the ~-matrices 
are given in (C. 1) with b = 6, from where it follows at once that 

~ao = 0, %t = 1 + �89 at (B.4) 

with a = 0 ,  1, 2, 4, 5 and l =  1, 2, 3, 4, 5. Here 0 =exp(frc/3)= �89 + fx//3). 

B3. Hexagon Model B 

This model is similar to the previous one, except that particles are not 
allowed to move along the edges of the hexagonal scatterers (see Fig. 2d) 
and the binary collision matrices T~ are given by 



Lattice Gases wi th  Stat ic  Disorder 1039 

To= - 1  ...]_ 1(~2._[_ ~3 ..~ ~4) 

Z 1 --- - -  1 + 1(~3 _~_ ~ 4  ..~ ~ 5 )  ( B . 5 )  

Ts=  - 1  + 1 ( ~ + ~ 2 + ~ 3 )  

The eigenvalues of the matrices Ta follow again from (C.1) with b = 6. The 
result for l = 0, 1 ..... 6 is 

to ,=  1 - ~[(-)'+ ( -  0)' + ( -  0")'3 
(B.6) 

~gl, ~--- "C~, = ] - -  1 r ( - ) , . - ~ -  (--O)17LO :~13 

with 0 defined below (B.4). 

B4. Triangle Model 

As in the two previous models, the lattice is triangular. The scatterers 
are now triangles located at the centers of the unit cells, as illustrated in 
Fig. 2b. Their positions are denoted by the reciprocal lattice vectors ei 
( i=  0, 1 ..... 5). No sites are excluded to the moving particle, but the edges 
of the triangles are. The density p = (s(r + ei) > denotes the fraction of unit 
cells occupied by a triangle. Figure 2b shows the collision rules for a single 
scatterer, which admit four outgoing velocity states. The collision operator 
has the form 

/u(r[ s) = 2 s(r + e/*+.a) Tai j (B.7) 
a 

with a = 0, 1, 4, 5. The binary collision T-matrices are 

5 

T ~ = - ] + � 8 8  2 * ~ k  (B.8) 
k = O  

with the constraint (*) on the sum k # a, a + 1. The eigenvalues and eigen- 
vectors of the ~-matrices are given in (C.1) with b = 6 ,  from where it 
follows at once that 

a at 0(~+1)l) raO = 0, %l= 1 +g(0  + (B.9) 

with 0 defined below (B.4) and with a = 0, 1, 4, 5 and l =  1, 2, 3, 4, 5. 
In ref. 7 more precise definitions of the T-matrices are given, which are 

required at finite densities where multiple collisions can occur. 
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A P P E N D I X  C. E IGENVALUES A N D  E IGENFUNCTIONS 

The probability distribution function for finding a scatterer of a certain 
type at site r is a site-independent quantity and therefore has the same 
discrete symmetry as the underlying space lattice. The scatterers, defined 
for the different models of this paper (see Appendixes A and B), are 
described by transition probabilities which either have rotation symmetry 
or reflection symmetry or both. 

Consequently the transition matrices Ta defined in Appendixes A and 
B, the Boltzmann collision operator A ~ in (3.1), the repeated ring collision 
operator A in (3.5) or (3.8), and the ring operator R in (3.6) are b x b 
matrices with either rotation or reflection symmetries, or both. These 
matrices commute with the matrices representing rotations or reflections 
and have common eigenvectors [cpt) ( l=  0, 1, 2 ..... b -  1). 

For the matrix 9 ,  representing the basic rotation over 2rc/b in the 
counterclockwise direction, one has 

(~cPl)j = cPl, j+ 1 - dt~Po 

dt=exp(Zlrff /b) ( l=0 ,  1, 2,..., b -  1) (C.1) 

q~o=exp(2jhtf/b) ( j = 0 ,  1 ..... b -  1) 

where b is the coordination number in two-dimensional lattices, 
f =  ( - 1 )  1/2, and (opt1 ~Pr)= 6~r, according to the inner product in (2,4). 

In the analysis o f  Section 4 it will also be convenient to have a 
representation of the eigenvectors ]q~) in the basis { IVk ) ,  [Vk>,2. 
k = O, 1, .... b / 2 -  1 } with components 

Vkj=Sjk- -6 j ,  k+b/2 ( j = 0 ,  1 ..... b - - l )  (C.2) 

Then, for square lattices with rotational symmetry (b = 4), the eigenvalues 
are dr= f t ( l=  0, 1, 2, 3) and the eigenvectors are 

I,po> = (1, 1, 1, 1)= I Vo ~) + I v~> 

lop1) = [~p*) = (1, f, - 1 ,  - f ) =  IVo) + f IV1) (C.3) 

[cp2) = (1, - 1 ,  1, - 1 ) =  IV2) - IZ 2) 

with the inverse relations 

1 
[Vo> =~ ([q)l> 

1 

+ 1~o35), 

+ I~o~>), 

iVl> =L 2f ([~P,) -I~P3)) 

1 
(C.4) 
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Similarly it follows for the triangular lattice with rotational symmetry 
(b=6)  that the eigenvalues are ,/l= 0 l ( l=0,  1 ..... 5) with O= �89 + fx//3) 
and the eigenvectors are 

I<Oo) = [Vo~) + l V ~ )  + I g~)  

I~o~) = I<o;" ) =  [ g o ) + o  I V y ) - o *  Iv2) 
(c.5) 

1~o2) = I~o~' ) =  I v ~ ) - o *  I v y > - o  Ig~) 

Io~> = IV o ) - I v ~ >  + IV z) 

with the inverse relations 

IVo>= 1 3([ ,(D1 > ~-[q)3> AI- [q)5>) 

t v, ) = 1(o* I~o~ ) - [Q~) + o [~o~)) 

1 ( - o  I~o~> + iq,~>-o* ko~>) JV~)=3 

IVy) = ~(1<oo ) + Jq~2) + I~p~ )) 

l v ~ ) =  ~ - 0 "  

IVY) =1  [ ~( ~Oo)-0" 1~o2)-0 Io , ) )  

(C.6) 

As far as reflection symmetries are concerned, the eigenvectors are only 
illustrated for the square lattice. The mirror planes are oriented under 
angles of ___re/4. Then the matrices Ta, A ~ A, and R commute, with the 
following matrices representing the symmetry operations: 

UR = ~ol ~2,  uL = ~o3 N2, UB = ~ 2 ~ 3  (c.7) 

where the permutation operators ~j interchanges the labels (components) 
i and j. The eigenvectors are 

]q~o) = (1, 1, 1, 1)--[Vo 2) +IVY) 

I~o,) = (1, 1, - 1 ,  - 1 ) =  [Vo) + IV1) 
(c.8) 

Iq~z)-- (1, - 1 ,  1, - 1 ) =  [Zo 2 ) -  IVy) 

1~o3> = (1, - 1 ,  - i ,  1)= I V o ) - I v , )  

with eigenvalues 

U R O  = U R 1  = - -  U R 2  .~- - -  U R 3  ~-  ] 

l.tLO = - -  U L 1  ~ - -  U L 2  -~- b lL3  ~ 1 (C.9) 

U B O  ~ - -  U B 1  ~-  U B 2  ~ - -  H B 3  = 1 
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The inverse re la t ions  are  

[ Vo) = l([q) 1) -1- [~o3)), 

) =~(Iq, o + 1~o2)), 

IV1) = ~(~01) - -  1r 

IVy> = �89 1~02>) 
(C.lO) 
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